Alternating syn-anti bacteriochlorophylls form concentric helical nanotubes in chlorosomes

TitleAlternating syn-anti bacteriochlorophylls form concentric helical nanotubes in chlorosomes
Publication TypeJournal Article
Year of Publication2009
AuthorsGanapathy, S., G.T. Oostergetel, P.K. Wawrzyniak, M. Reus, A.G.M. Chew, F. Buda, E.J. Boekema, D.A. Bryant, A.R. Holzwarth, H.J.M. de Groot
JournalProceedings of the National Academy of Sciences of the United States of America
Volume106
Issue21
Pagination8525-8530
Date PublishedMay
ISBN Number0027-8424
Accession NumberISI:000266432700023
Abstract

Chlorosomes are the largest and most efficient light-harvesting antennae found in nature, and they are constructed from hundreds of thousands of self-assembled bacteriochlorophyll (BChl) c, d, or e pigments. Because they form very large and compositionally heterogeneous organelles, they had been the only photosynthetic antenna system for which no detailed structural information was available. In our approach, the structure of a member of the chlorosome class was determined and compared with the wild type (WT) to resolve how the biological light-harvesting function of the chlorosome is established. By constructing a triple mutant, the heterogeneous BChl c pigment composition of chlorosomes of the green sulfur bacteria Chlorobaculum tepidum was simplified to nearly homogeneous BChl d. Computational integration of two different bioimaging techniques, solid-state NMR and cryoEM, revealed an undescribed syn-anti stacking mode and showedhowligated BChl c and d self-assemble into coaxial cylinders to form tubular-shaped elements. A close packing of BChls via pi-pi stacking and helical H-bonding networks present in both the mutant and in the WT forms the basis for ultrafast, long-distance transmission of excitation energy. The structural framework is robust and can accommodate extensive chemical heterogeneity in the BChl side chains for adaptive optimization of the light-harvesting functionality in low-light environments. In addition, syn-anti BChl stacks form sheets that allow for strong exciton overlap in two dimensions enabling triplet exciton formation for efficient photoprotection.

DOI10.1073/pnas.0903534106

Discover the world at Leiden University